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CONSPECTUS: Three novel fragmentation methods that are available in the
electronic structure program GAMESS (general atomic and molecular electronic
structure system) are discussed in this Account. The fragment molecular orbital
(FMO) method can be combined with any electronic structure method to
perform accurate calculations on large molecular species with no reliance on
capping atoms or empirical parameters. The FMO method is highly scalable and
can take advantage of massively parallel computer systems. For example, the
method has been shown to scale nearly linearly on up to 131 000 processor cores
for calculations on large water clusters. There have been many applications of the
FMO method to large molecular clusters, to biomolecules (e.g., proteins), and to
materials that are used as heterogeneous catalysts.
The effective fragment potential (EFP) method is a model potential approach that
is fully derived from first principles and has no empirically fitted parameters.
Consequently, an EFP can be generated for any molecule by a simple preparatory
GAMESS calculation. The EFP method provides accurate descriptions of all types of intermolecular interactions, including
Coulombic interactions, polarization/induction, exchange repulsion, dispersion, and charge transfer. The EFP method has been
applied successfully to the study of liquid water, π-stacking in substituted benzenes and in DNA base pairs, solvent effects on
positive and negative ions, electronic spectra and dynamics, non-adiabatic phenomena in electronic excited states, and nonlinear
excited state properties.
The effective fragment molecular orbital (EFMO) method is a merger of the FMO and EFP methods, in which interfragment
interactions are described by the EFP potential, rather than the less accurate electrostatic potential. The use of EFP in this
manner facilitates the use of a smaller value for the distance cut-off (Rcut). Rcut determines the distance at which EFP interactions
replace fully quantum mechanical calculations on fragment−fragment (dimer) interactions. The EFMO method is both more
accurate and more computationally efficient than the most commonly used FMO implementation (FMO2), in which all dimers
are explicitly included in the calculation. While the FMO2 method itself does not incorporate three-body interactions, such
interactions are included in the EFMO method via the EFP self-consistent induction term. Several applications (ranging from
clusters to proteins) of the three methods are discussed to demonstrate their efficacy. The EFMO method will be especially
exciting once the analytic gradients have been completed, because this will allow geometry optimizations, the prediction of
vibrational spectra, reaction path following, and molecular dynamics simulations using the method.

1. INTRODUCTION

One of the goals of theoretical chemistry is to provide as
accurate a description of chemical systems as possible within
the limits of the currently available computational hardware and
software. Over time, hardware limitations have receded and
software has advanced, enabling accurate calculations on larger
chemical systems than was heretofore possible. The most
recent improvements have been multilevel parallel algorithms
and accelerator hardware, for example, graphical processing
units (GPUs) and many integrated core (MIC) coprocessors.
Developing codes that can make efficient use of many

thousands of cores is challenging. On the one hand, one can
modify an existing algorithm to take advantage of parallel
architectures. Alternatively, one can develop new theoretical
models that possess inherent parallelization that is straightfor-
wardly implemented on parallel machines. This Account
focuses on the latter path; in particular, the development of
theoretical methods within the GAMESS computational

package1,2 that have been devised to take advantage of novel
parallel architectures.

2. THEORETICAL METHODS

2.1. Effective Fragment Potential Method

The effective fragment potential (EFP) method was originally
developed to describe effects that aqueous solvation can have
on chemical reactions. That method (EFP1), contains three
contributions to the interaction energy of the system:
polarization, Coulomb, and repulsion terms. The details of
the EFP methodology have been presented elsewhere,3 so only
a brief description of the method is presented here.
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The total EFP1 interaction energy can be written as

= + +E E E EEFP1 pol Coul rep (1)

In the presence of a quantum mechanics (QM) solute, the
EFP1−QM contributions to the energy of the system are added
as one-electron terms to the QM Hamiltonian.

= ⟨Ψ| + + + |Ψ⟩ +

+ +

−E H V V V E

E E

EFP1 QM QM pol Coul rep pol

Coul rep (2)

The dipole−induced dipole polarization energy is iterated to
self-consistency for both EFP−EFP and QM−EFP interactions,
so this term captures many-body effects. Each induced dipole is
located at the centroid of a localized molecular orbital (LMO),
where the anisotropic distributed polarizability tensors are
placed.
The EFP Coulomb term is calculated using a distributed

multipolar analysis through octopoles. The distributed multi-
pole moments, located at each atom center and bond midpoint,
are obtained using the procedure outlined by Stone.4,5 Short-
range charge penetration effects are accounted for using a
Gaussian like damping function of the form 1 − β exp(−αR2),
where the α and β parameters were obtained from a fit of the
damped multipole potential to the QM Hartree−Fock (HF) or
density functional theory (DFT) potential, and R is the distance
between two multipole points or between a multipole point and
an electron.
All remaining contributions to the EFP−QM interactions

(exchange repulsion and charge transfer) are contained in the
Vrep term, which is fitted to a functional form.
A more general formulation of the EFP method (termed

EFP2, but herein referred to as simply EFP) was developed to
allow for solvation effects using solvents other than water. In
general, an EFP can be created for any molecule. The EFP
energy expression can be written as

= + + + +E E E E E EEFP pol Coul rep disp ct (3)

Equation 3 contains two additional terms, Edisp and Ect. All of
the terms in eq 3 are derived from first-principles, so there are
no empirically fitted parameters.
The Edisp term between two fragments is evaluated as the

leading dipole−induced dipole 1/R6 term. The higher order
terms are estimated to be 1/3 of the 1/R6 term. The resulting
formula is

∑=E
C

R
4
3 k l

kl

kl

disp

,

6,
6

(4)

The indices k and l refer to localized molecular orbitals
(LMOs) on fragments A and B (A ≠ B). Rkl is the distance
between the LMO centroids. C6 is obtained by integrating over
the imaginary frequency dependent polarizability tensors at
points k and l.6,7

Both Erep and Ect depend on the intermolecular overlap of the
fragment MOs. The expression for Erep is truncated at the
quadratic term, while the energy expression for Ect is based on a
second-order perturbative treatment of intermolecular inter-
actions.8−12 The ECoul, Epol, and Edisp terms are multiplied by a
damping term that is based on the intermolecular overlap.13

2.2. Fragment Molecular Orbital Method

The fragment molecular orbital (FMO) method was developed
to study biologically relevant systems such as proteins using
QM methods.14 By fragmentation of covalent bonds and

division of a system into many separate fragments (monomers),
the overall computational cost is reduced to that required for
the largest fragment calculation. The general energy expression
for the FMO2 method, involving explicit calculations on
monomers and fragment pairs (dimers), is

∑ ∑= + − −
>

E E E E E( )
I

N

I
I J

N

IJ I J
(5)

Monomer (I) and dimer (IJ) energies are obtained using
standard QM methods. Three-body “trimer” calculations (IJK)
can also be included for increased accuracy (FMO3), albeit at
an increased computational cost.15 The presence of the
remaining fragments is accounted for during each monomer
calculation through the use of an electrostatic potential (ESP),
the Coulomb bath.14 The overall procedure for the calculation
of the total FMO energy is as follows:

(1) A fragmentation scheme is chosen, and the initial
electron density distribution is calculated for each
monomer.

(2) The fragment Fock operators are constructed using the
electron densities from step 1, and the energy of each
monomer is calculated in the presence of the Coulomb
bath of the remaining fragments.

(3) Step 2 is repeated using the improved electron densities,
resulting in a self-consistently converged ESP.

(4) The converged ESP is then incorporated into each dimer
(and trimer) calculation, with each many-body energy
being calculated only once (no self-consistency).

The ESP is incorporated into the one-electron Hamiltonian,
H̃x, as an additional term Vμν

x .

∑ μ φ φ ν̃ = + + ⟨ || ⟩⟨ || ⟩μν μν μνH H V Bx x x

i
i
h

i
h

(6)

The third term in eq 6 is a projection operator used to divide
basis functions across fractioned covalent bonds.
An important aspect of the FMO method is the inclusion of

the ESP during individual fragment calculations. The specific
form of Vμν

x is

∑= +μν μν μν
≠

V u v( )x

K x

K K

( ) (7)

∑ μ ν= ⟨ | − | − | | ⟩μν
∈

u Z r r( / )K

A K
A A

(8)

∑ μν λσ= |μν
λσ

λσ
∈

v D ( )K

K

K

(9)

The uμν
K and vμν

K are the nuclear attraction and two-electron
contributions, respectively. Both of these contributions are
expressed in terms of the atomic orbitals (AOs) μ and ν and are
calculated for all of the surrounding monomers K with electron
density DK. It is the self-consistent nature and subsequent
inclusion of the ESP into each fragment calculation that allows
the FMO method to achieve high accuracy, despite the
approximations in the method. For chemical systems, inclusion
of the ESP during individual fragment calculations also
facilitates bond fractioning that does not require arbitrary
hydrogen caps.
The FMO method may be considered to be an ansatz that

can be combined with essentially any electronic structure
method that is available in GAMESS. In recent years, the FMO
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capability has been expanded to include multiconfigurational
self-consistent field theory (MCSCF),16 configuration inter-
action with single excitations (CIS),17 restricted open-shell HF
(ROHF),18,19 density functional theory (DFT),20 time-depend-
ent DFT (TDDFT),21 second order Møller−Plesset perturba-
tion theory (MP2),22 and coupled cluster theory (CC).23 The
FMO method can be combined with either explicit (EFP) or
implicit methods to incorporate solvent effects.24−26 Fully
analytic gradients have been derived and implemented for
FMO/HF,27 FMO/DFT,28 and FMO/MP2.29 Fully analytic
gradients facilitate the use of molecular dynamics (MD)
simulations.30−33 Each advancement of the FMO method has
been derived separately, and all major aspects and improve-
ments of the FMO method have been discussed and cited in a
recent review.3,34

2.3. Effective Fragment Molecular Orbital Method

An important recent improvement of the FMO method is the
development of the effective fragment molecular orbital
(EFMO) method.35 The EFMO method may be thought of
as an integration of the FMO and EFP methods. The
importance of this new development is best appreciated in
the context of the FMO “separated dimers” approximation.
Separated dimers are defined as pairs of fragments that are
separated by a distance greater than a user defined cutoff value,
Rcut. The FMO energy expression (eq 5) can be rewritten as

∑ ∑ ∑= + Δ + Δ
>

≤

>

>

E E E E
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N
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I J

R R

IJ
I J

R R

IJ
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where

Δ = − −E E E E( )IJ IJ I J (11)

The unitless distance between two fragments I and J is defined
as
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So, RI,J is the relative minimum distance between fragments I
and J based on the van der Waals radii of the atoms contained
in each fragment. For example, RI,J = 1 means the fragments I
and J are separated by the van der Waals distance. Rcut is the

value of RI,J beyond which two fragments are taken to be
“separated”. The separated dimers described above are
represented by the third term in eq 10. Using this new
formulation of the total FMO energy, the number of fully QM
dimers evaluated can be reduced based on the value of Rcut.
The division of dimer calculations into QM and separated

provides added flexibility to how the separated dimer
calculations are evaluated. In the FMO method, the separated
dimer calculations are approximated by a combination of one-
electron Coulomb potentials and the nuclear repulsion energy.
However, this approximate description of dimer interactions
restricts the minimum distance at which Rcut can be set. If Rcut is
too small, the result will be a decrease in accuracy, causing the
FMO method to become unreliable. By performing the
separated dimer calculations using a more accurate method,
one can maintain, or even improve, the overall accuracy of the
FMO method, while still reducing the computational cost of a
given calculation. In the EFMO method, the EFP method is
used to evaluate the separated dimer energies.
Equation 10 can be combined with eq 3 and rewritten as

∑ ∑

∑
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As shown in eq 13, all five intermolecular interactions from the
EFP method are used to describe the separated dimers.36

Importantly, the polarization term in eq 13 incorporates many-
body effects into EFMO in a natural way. So, EFMO
incorporates many-body effects within the FMO2 level.
Through the use of a QM based model potential such as
EFP, the minimum value of Rcut can be lowered, resulting in a
reduction in computational cost compared with the FMO
method. During a geometry optimization, an MD simulation, or
a Monte Carlo simulation, new EFP potentials are generated in
each step. The constraint of internally frozen EFP geometries is
thereby removed. This will be a key improvement for
phenomena like phase changes and the study of infrared
spectra. As an additional benefit, an EFP energy decomposition
analysis (EDA) is obtained for all separated dimer interactions.

Figure 1. Probability distribution functions of the hydronium ion in a 32 water cluster using EFP2 for the entire system and using MP2 for the
hydronium ion and TIP5P for the solvating water.
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3. RECENT ADVANCES

3.1. Effective Fragment Potential Method Umbrella
Sampling

Umbrella sampling37 has been combined with the EFP
method38 to compute the surface affinity of the hydronium
ion in water. Figure 1 shows probability distribution functions
for a hydronium ion solvated by 32 water molecules. For the
umbrella sampling calculations, a spherical harmonic boundary
potential centered at the origin was applied to prevent
evaporation. The edge of the spherical harmonic boundary
potential was set to 6.2 Å so that the density of the cluster
would be equal to the density of water at 300 K if all molecules
were inside the spherical boundary. For this cluster, when the
EFP method is used to describe both the hydronium ion and
the solvating waters, umbrella sampling calculations predict that
the proton most probably lies about 1/3 of the way from the
center of the water cluster to the surface of the cluster. For
calculations using the MP2/aug-cc-pVDZ level of theory to
describe the hydronium ion and the TIP5P potential for the
solvating waters, umbrella sampling predicts that the proton
most probably lies about 3/4 of the way from the center of the
cluster toward the surface of the cluster.
The EFP results predict that the H3O

+ lies further from the
surface of the water cluster than has been suggested by much of
the recent computational and experimental results on the
surface affinity of the solvated hydronium ion.39−43 Since most
of the previous computational studies have used classical
potentials or a QM/MM level of theory and the EFP method
has been shown to accurately reproduce geometries and
energetics of water at the MP2 level theory,44,45 it is possible
that the EFP method is correctly mimicking ab initio molecular
dynamics (MD) with MP2. To further investigate this
possibility, future studies will examine the solvated hydronium
using FMO-MD or EFMO-MD.
3.2. Fragment Molecular Orbital Molecular Dynamics

FMO-MD simulations were recently implemented32,33 in the
GAMESS program package after the addition of fully analytic
energy gradients27 to the FMO2 method. While improvements

are still being made to the initial implementation, preliminary
studies of the (NO3)

− ion in solution were performed to
further investigate the accuracy of the FMO-MD method.
Simulations were performed at the FMO2/HF/6-31+G(d,p)
level of theory. The nitrate ion was solvated with 32 water
molecules, and a fragmentation scheme of one molecule (water
or nitrate) per fragment was used. The molecular cluster was
equilibrated for 500 fs using the NVT ensemble, followed by 20
ps of simulation using the NVE ensemble. A step size of 0.25 fs
was used with default values for the FMO2 approximations.
The fully analytic energy gradients require that the electrostatic
point charge approximation to the ESP be turned off.
Figure 2 shows the radial distribution function of water H

atoms around the nitrate O atoms obtained from the 20 ps
simulation. Two solvation shells are observed, the first at 2.0 Å
and the second at 3.4 Å. Compared with previous studies,46 the
FMO-MD results agree well with EFP based results that predict
two solvation shells at 2.1 and 3.4 Å. Amber 8 MD simulations
from the same work give similar results, with peaks at 1.8 and
3.1 Å.
The FMO2-MD method does not include nonclassical three-

body interactions that are essential for the accurate description
of water clusters.44,45,47−51 Nonetheless, the FMO-MD
simulation reproduces the hydrogen bonding interactions
within the (NO3)

−(H2O)32 cluster, providing good agreement
with previous work.46 Future calculations will employ the
EFMO/MP2 method, in order to incorporate both many-body
effects and electron correlation.
3.3. Effective Fragment Molecular Orbital Method Applied
to a Small Protein

Previously,36 EFMO calculations were presented on molecular
clusters. Now, consider the ability of the EFMO method to
accurately describe a covalently bonded system. The small
protein chignolin (PDB 1UAO) was used as a test system. The
protein was divided into nine fragments, with the fragmentation
scheme shown in Figure 3. MP2, FMO2-MP2, and EFMO-
MP2 single point energy calculations using three different basis
sets (6-31G(d), 6-31G(d,p), and 6-311G(d,p)) were performed
on the structure obtained from the PDB database. Default

Figure 2. Radial distribution function of water H atoms around nitrate O atoms in NO3
−(H2O)32 simulation. FMO-MD/HF/6-31+G(d) simulation

run for 20 ps with a step size of 0.25 fs.
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values for FMO2 were used, while the Rcut value for the
electrostatic dimer approximation was reduced by half (from
2.0 to 1.0) for the EFMO calculations, resulting in fewer QM
dimer calculations (30 FMO2 QM dimers versus 14 EFMO
QM dimers).
Table 1 shows the signed errors in the total energy of the

protein for both FMO2 and EFMO compared with fully ab

initio MP2 results. For the two smaller basis sets, FMO2 and
EFMO perform similarly, with errors of 11.4 and −8.3 kcal/
mol. The difference between the two methods decreases with
an increase to the 6-31G(d,p) basis sets, providing errors of
10.3 and −10.8 kcal/mol for FMO2 and EFMO, respectively.
The 6-311G(d,p) basis set proved troublesome for the FMO2
method, requiring many additional iterations to converge the
ESP, producing an error of −54.4 kcal/mol. However, it is well-
known that the FMO2 method performs poorly using extended
basis sets.52−54 On the other hand, the performance of the
EFMO method improves when using the larger basis set, with
the error dropping to only −4.0 kcal/mol compared with fully
ab initio MP2 results.
Figure 4 shows the EDA among all separated dimers in the

EFMO calculation. Since the EFMO method uses the EFP
method to calculate the separated dimer interaction energies,
the EDA is an added benefit of using the EFMO method. Two

dimer interactions of particular interest, shown in Figure 5 (6.1
and 8.1), are investigated in greater detail. The interaction in
dimer 6.1 (glycine/tyrosine) is characterized by a large
repulsive contribution to the interaction energy (Figure 4).
Figure 5 shows that the closest interaction is between the
hydrogen atoms on the two amino acids. The dimer interaction
between the tryptophan (fragment 8) and tyrosine (fragment
1) is dominated by a T-shaped dispersive interaction between
two aromatic rings. This type of π−π interaction has been
studied previously using the EFP method. It was shown in that
work55 that EFP is capable of providing dispersive interaction
energies that agree well with high level CC and symmetry
adapted perturbation theory (SAPT) calculations.

3.4. Toward Fully Analytic EFMO Gradients

In the initial version of the EFMO method,35 approximate
gradients for the polarization energy term and the Coulomb
energy term were derived and implemented. However, in order
to perform accurate MD simulations and geometry optimiza-
tions using the EFMO method, the fully analytic gradient for all
terms is required. Thus, the fully analytic gradients for all terms
in the EFMO method are currently being derived and
implemented.
The general EFMO gradient equation is represented as
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where the derivative of each term in eq 13 is taken with respect
to the x-coordinate of atom c. The EFMO energy expression
contains gas phase ab initio energy terms and EFP interaction
energy terms. The ab initio terms are the monomer energy and
the QM nonseparated dimer energy terms (∂EI

0/(∂xc),ΔEIJ
0/

(∂xc)), and the EFP interaction energy terms are the separated
dimer energy terms and the polarization energy terms (∂EIJ

pol/
(∂xc),∂EIJ

coul/(∂xc),∂EIJ
disp/(∂xc),∂EIJ

rep/(∂xc),∂EIJ
ct/(∂xc),∂Etot

pol/
(∂xc)). The previously derived and implemented gradient for
any ab initio term can be used directly. The previously derived
EFP gradients cannot be directly used in the EFMO gradient,
because in EFP calculations the fragments are rigid. Certain
terms, such as the multipole moments in the EFP Coulomb
term and polarizability tensors in the EFP polarization term,
depend on the fragment internal geometry. If the fragments are
rigid, as in the EFP method, the internal geometry does not
change. Since the fragments are flexible in the EFMO method,
the fragment internal geometry does change, and the derivative
of these terms needs to be included in the gradient. Although
gradients for the polarization energy term and the Coulomb
energy term currently exist,35 the gradients are not fully
analytic, since the terms that arise due to the geometry
dependence of the multipole moments and polarizability
tensors are neglected.
Recently, the fully analytic gradient of the Coulomb term

(∂EIJ
coul/(∂xc)) has been derived and implemented. This

includes the gradient of the previously neglected terms, which
requires solving the coupled perturbed HF equations (in
practice, a Z-vector equation is solved).56,57 By inclusion of the

Figure 3. Fragmentation scheme used for FMO2 and EFMO
calculations on chignolin.

Table 1. Errors (kcal/mol) for FMO2 and EFMO Using
Three Different Basis Sets Compared with Fully ab Initio
MP2 Energies

FMO2 EFMO

6-31G(d) 11.4 −8.3
6-31G(d,p) 10.3 −10.8
6-311G(d,p) −54.4 −4.0
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terms missing from the original EFMO gradient, the Coulomb
energy term gradient is now fully analytic. The implementation
was tested by comparing the numeric gradient to the analytic
gradient for a system containing 64 water fragments using a 6-
31++G(d,p) basis set.
The numeric gradient was calculated using a step size of

0.005 Å and an Rcut value of 0.3. The small Rcut value forces all
dimer energies to be considered separated and therefore
calculated using the EFP gradient code. The polarization energy
was removed to test only the Coulomb energy term. Therefore,
the energy equation tested was EEFMO = ∑I

NEI
0 + ∑I>J

RI,J>RcutEIJ
Coul.

The results are shown in Table 2. The new implementation
shows a significant improvement over the previous Coulomb

energy term gradient implementation. The maximum gradient
values resulting from the new implementation agree well with
the numeric maximum gradient value, and the root-mean-
square (RMS) error is small. The previous implementation has
significantly larger RMS errors. Figure 6 shows this difference
by plotting the error of the original approximate EFMO
gradient and the fully analytic EFMO gradient relative to the
numeric gradient.
The fully analytic gradients for the remaining separated

dimer EFP interaction energy terms (polarization, exchange
repulsion, dispersion, and charge transfer) are in the process of
being derived and implemented. Once all of the gradient terms
are fully analytic, accurate MD and geometry optimizations can
be performed using EFMO.

4. CONCLUDING REMARKS

Three fragmentation methods have been discussed in this
Account. The fragment molecular orbital (FMO) method can
be combined with any electronic structure method to perform
accurate calculations on large molecular species. The FMO
method is highly scalable and can take advantage of massively
parallel computer systems. Analytic gradients are available for
the FMO implementations of Hartree−Fock, density functional

Figure 4. EFMO energy decomposition analysis between all separated dimers.

Figure 5. Local views of dimers 6.1 and 8.1.

Table 2. Comparison of EFMO Gradients and Numeric
Gradients for a Cluster of 64 Water Molecules Using the 6-
31++G(d,p) Basis Seta

maximum gradient value RMS error maximum error

numeric 0.022 894
original EFMO 0.023 659 0.002 904 0.013 334
analytic EFMO 0.022 883 0.000 013 0.000 037

aAll values are in hartree/bohr.
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theory, and second order perturbation theory, thereby
facilitating geometry optimizations and molecular dynamics
(MD) simulations for these methods. In general FMO
simulations are expected to provide more accuracy than MD
simulations with highly parametrized model potentials,
providing ab initio insight into bulk properties.
The effective fragment potential (EFP) method is a model

potential approach that is fully derived from first-principles and
has no empirically fitted parameters. The EFP method provides
accurate descriptions of all types of intermolecular interactions,
ranging from Coulombic interactions to dispersion-controlled
interactions. Fully analytic EFP gradients are also available, so
that EFP MD simulations are possible when only intermo-
lecular (not covalent) interactions are of interest.
The effective fragment molecular orbital (EFMO) method is

a merger of the FMO and EFP methods, in which
interfragment interactions are described by the EFP potential
rather than the less accurate electrostatic potential. Using the
EFP method in this manner provides three-body interactions
without the need for more expensive higher orders of FMO
theory. The EFMO method also provides a route to internally
flexible fragments, thereby removing a limitation of the
standalone EFP method. The EFMO method is both more
accurate and more computationally efficient that the most
commonly used FMO implementation, FMO2. The derivation
and implementation of fully analytic EFMO energy gradients
are in progress.
Several applications of the three methods demonstrate their

efficacy.
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Figure 6. Error of the analytic gradients relative to the numeric
gradient for each gradient element in a cluster of 64 water molecules.
Blue, original implementation; red, new, fully analytic implementation.

Accounts of Chemical Research Article

dx.doi.org/10.1021/ar500097m | Acc. Chem. Res. 2014, 47, 2786−27942792



(4) Stone, A. J. Distributed Multipole Analysis, or How to Describe a
Molecular Charge Distribution. Chem. Phys. Lett. 1981, 83, 233−239.
(5) Stone, A. J. The Theory of Intermolecular Forces; Oxford University
Press: Oxford, U.K., 1996.
(6) Amos, R. D.; Handy, N. C.; Knowles, P. J.; Rice, J. E.; Stone, A. J.
Ab-initio Prediction of Properties of Carbon Dioxide, Ammonia, and
Carbon Dioxide···Ammonia. J. Phys. Chem. 1985, 89, 2186−2192.
(7) Adamovic, I.; Gordon, M. S. Dynamic Polarizability, Dispersion
Coefficient C6 and Dispersion Energy in the Effective Fragment
Potential Method. Mol. Phys. 2005, 103, 379−387.
(8) Jensen, J. H.; Gordon, M. S. An Approximate Formula for the
Intermolecular Pauli Repulsion Between Closed Shell Molecules. Mol.
Phys. 1996, 89, 1313−1325.
(9) Jensen, J. H. Modeling Intermolecular Exchange Integrals
between Non-orthogonal Molecular Orbitals. J. Chem. Phys. 1996,
104, 7795−7796.
(10) Jensen, J. H.; Gordon, M. S. An Approximate Formula for the
Intermolecular Pauli Repulsion between Closed Shell Molecules. II.
Application to the Effective Fragment Potential Method. J. Chem. Phys.
1998, 108, 4772−4782.
(11) Jensen, J. H. Intermolecular Exchange-Induction and Charge
Transfer: Derivation of Approximate Formulas Using Non-orthogonal
Localized Molecular Orbitals. J. Chem. Phys. 2001, 114, 8775−8783.
(12) Li, H.; Gordon, M. S.; Jensen, J. H. Charge Transfer Interaction
in the Effective Fragment Potential Method. J. Chem. Phys. 2006, 124,
No. 214108.
(13) Slipchenko, L. V.; Gordon, M. S. Damping Functions in the
Effective Fragment Potential Method. Mol. Phys. 2009, 107, 999−
1016.
(14) Kitaura, K.; Ikeo, E.; Asada, T.; Nakano, T.; Uebayasi, M.
Fragment Molecular Orbital Method: An Approximate Computational
Method for Large Molecules. Chem. Phys. Lett. 1999, 313, 701−706.
(15) Fedorov, D. G.; Kitaura, K. The Three-Body Fragment
Molecular Orbital Method for Accurate Calculations of Large Systems.
Chem. Phys. Lett. 2006, 433, 182−187.
(16) Fedorov, D. G.; Kitaura, K. Multiconfiguration self-consistent-
field theory based upon the fragment molecular orbital method. J.
Chem. Phys. 2005, 122, No. 054108.
(17) Mochizuki, Y.; Koikegami, S.; Amari, S.; Segawa, K.; Kitaura, K.;
Nakano, T. Configuration Interaction Singles Method with Multilayer
Fragment Molecular Orbital Scheme. Chem. Phys. Lett. 2005, 406,
283−288.
(18) Pruitt, S. R.; Fedorov, D. G.; Kitaura, K.; Gordon, M. S. Open-
Shell Formulation of the Fragment Molecular Orbital Method. J.
Chem. Theor. Comput. 2010, 6, 1−5.
(19) Pruitt, S. R.; Fedorov, D. G.; Gordon, M. S. Geometry
Optimizations of Open-Shell Systems with the Fragment Molecular
Orbital Method. J. Phys. Chem. A 2012, 116, 4965−4974.
(20) Sugiki, S.; Kurita, N.; Sengoku, Y.; Sekino, H. Fragment
Molecular Orbital Method with Density Functional Theory and DIIS
Convergence Acceleration. Chem. Phys. Lett. 2003, 382, 611−617.
(21) Chiba, M.; Fedorov, D.; Kitaura, K. Time-Dependent Density
Functional Theory with the Multilayer Fragment Molecular Orbital
Method. Chem. Phys. Lett. 2007, 444, 346−350.
(22) Fedorov, D. G.; Kitaura, K. Second Order Møller-Plesset
Perturbation Theory Based upon the Fragment Molecular Orbital
Method. J. Chem. Phys. 2004, 121, 2483−2490.
(23) Fedorov, D. G.; Kitaura, K. Coupled-Cluster Theory Based
upon the Fragment Molecular-Orbital Method. J. Chem. Phys. 2005,
123, No. 134103.
(24) Nagata, T.; Fedorov, D. G.; Kitaura, K.; Gordon, M. S. (2009).
A combined effective fragment potential−fragment molecular orbital
method. I. The energy expression and initial applications. J. Chem.
Phys. 2009, 131, 024101−12.
(25) Nagata, T.; Fedorov, D. G.; Sawada, T.; Kitaura, K. Analysis of
Solute-Solvent Interactions in the Fragment Molecular Orbital
Method Interfaced with Effective Fragment Potentials: Theory and
Application to a Solvated Griffithsin-Carbohydrate Complex. J. Phys.
Chem. A 2012, 116, 9088−9099.

(26) Fedorov, D. G.; Kitaura, K.; Li, H.; Jensen, J.; Gordon, M. S.
The Polarizable Continuum Model (PCM) Interfaced with the
Fragment Molecular Orbital Method (FMO). J. Comput. Chem.
2006, 27, 976−985.
(27) Nagata, T.; Brorsen, K.; Fedorov, D. G.; Kitaura, K.; Gordon, M.
S. Fully Analytic Energy Gradient in the Fragment Molecular Orbital
Method. J. Chem. Phys. 2011, 134, No. 124115.
(28) Brorsen, K. R.; Zahariev, F.; Nakata, H.; Gordon, M. S. Analytic
gradient for fragment molecular orbital density functional theory.
Manuscript in preparation.
(29) Nagata, T.; Fedorov, D. G.; Ishimura, K.; Kitaura, K. Analytic
Energy Gradient for Second-Order Møller-Plesset Perturbation
Theory Based on the Fragment Molecular Orbital Method. J. Chem.
Phys. 2011, 135, No. 044110.
(30) Komeiji, Y.; Nakano, T.; Fukuzawa, K.; Ueno, Y.; Inadomi, Y.;
Nemoto, T.; Uebayasi, M.; Fedorov, D. G.; Kitaura, K. Fragment
Molecular Orbital Method: Application to Molecular Dynamics
Simulation, ‘ab Initio FMO-MD’. Chem. Phys. Lett. 2003, 372, 342−
347.
(31) Komeiji, Y.; Mochizuki, Y.; Nakano, T.; Fedorov, D. G.
Fragment Molecular Orbital-Based Molecular Dynamics (FMO-MD),
a Quantum Simulation Tool for Large Molecular Systems. J. Mol.
Struct. THEOCHEM 2009, 898, 2−7.
(32) Nagata, T.; Fedorov, D. G.; Kitaura, K. Analytic Gradient and
Molecular Dynamics Simulations Using the Fragment Molecular
Orbital Method Combined with Effective Potentials. Theor. Chem. Acc.
2012, 131, 1−15.
(33) Brorsen, K. R.; Minezawa, N.; Xu, F.; Windus, T. L.; Gordon,
M. S. Fragment Molecular Orbital Molecular Dynamics with the Fully
Analytic Energy Gradient. J. Chem. Theor. Comput. 2012, 8, 5008−
5012.
(34) Fedorov, D. G., Kitaura, K., Eds.; The Fragment Molecular
Orbital Method: Practical Applications to Large Molecular Systems; CRC
Press: Boca Raton, FL, 2009; pp 1−36.
(35) Steinmann, C.; Fedorov, D. G.; Jensen, J. H. Effective Fragment
Molecular Orbital Method: A Merger of the Effective Fragment
Potential and Fragment Molecular Orbital Methods. J. Phys. Chem. A
2010, 114, 8705−8712.
(36) Pruitt, S. R.; Steinmann, C.; Jensen, J. H.; Gordon, M. S. Fully
Integrated Effective Fragment Molecular Orbital Method. J. Chem.
Theory Comput. 2013, 9, 2235−2249.
(37) Kumar, S.; Rosenberg, J. M.; Bouzida, D.; Swendsen, R. H.;
Kollman, P. A. Multidimensional Free-Energy Calculations Using the
Weighted Histogram Analysis Method. J. Comput. Chem. 1995, 16,
1339−1350.
(38) Choi, C. H.; Re, S.; Feig, M.; Sugita, Y. Quantum Mechanical/
Effective Fragment Potential Molecular Dynamics (QM/EFP-MD)
Study on Intra-molecular Proton Transfer of Glycine in Water. Chem.
Phys. Lett. 2012, 539, 218−221.
(39) Petersen, P. B.; Saykally, R. J. On the Nature of Ions at the
Liquid Water Surface. Annu. Rev. Phys. Chem. 2006, 57, 333−364.
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